October 20

Get Whiteboards

I will teach 0175 next semester WF from 2:00-3:40 and M 2:00-2:50

The class is listed with course id number 33982

It should be open to everyone, so if you want a spot, I suggest registering as early as possible...

Go Over Quiz

A Plutonium-240 with a rest mass of 240.054 u fissions when it absorbs a neutron. For this problem, the three fission fragments are two equal fragments: Silver-120 nuclei with rest mass 119.919 u and charge 47e, and a free neutron. (In addition to the two main fission fragments there are typically one or more free neutrons in the final state; in your analysis make the simplifying assumption that the one free neutron has the same kinetic energy as the absorbed neutron.)

The unit u is a unified atomic mass unit where 1 u = 1.66054e-27 kg (approximately the mass of one nucleon) and e is the charge on a proton, e = 1.60218e-19 coulomb. $1/(4\pi\epsilon_0) = 8.98755 \times 10^9 \text{N} \cdot \text{m}^2/\text{C}^2$, $c = 2.99792 \times 10^8 \text{ m/s}$.

Keep at least 6 significant figures in your intermediate calculations.

- (a) Calculate the final speed v, when the Silver-120 nuclei have moved very far apart (due to their mutual electric repulsion)
- (b) Using energy considerations, calculate the distance between centers of the Silver-120 nuclei just after fission, when they are momentarily at rest.

GATHER:

 $\rm M_{Pl\text{-}240}\!=240.054$ u; $\rm M_{Ag\text{-}120}\!\!=119.919$ u; 1 u = 1.66054e-27 kg; $\rm Q_{Ag\text{-}120}\!=47$ e; e = 1.60218e-19 coulomb

It is ok to use the nonrelativistic formulas, but must check that the calculated v is indeed small compared to c. (The large kinetic energies of these palladium nuclei are eventually dissipated into thermal energy of the surrounding material. In a nuclear reactor this hot material boils water and drives an electric generator.)

ORGANIZE:

Chose a system: all the particles (no external work) Identify initial and final states (there are three choices):

- 1. The Pl-240 nucleus + free neutron before it fissions
- 2. Just after fission when the two silver nuclei are close together and momentarily at rest + free neutron.
- 3. The silver nuclei are very far away from each other, traveling at high speeds + free neutron

ANALYZE:

The analysis can be thought of as a diamond.

- Write a compact statement of the energy principle for your system and choice of initial and final states.
- Expand to include all the possible energy terms.
- Rewrite with appropriate subscripts for the situation.
- Contract by evaluating specific terms.
- Solve for the unknown quantity of interest.

$$E_f = E_i + W_{\rm ext}$$

$$(m_{1f}c^2 + K_{1f}) + (m_{2f}c^2 + K_{2f}) + ... + U_{12f} + ... = (m_{1i}c^2 + K_{1i}) + (m_{2i}c^2 + K_{2i}) + ... + U_{12i} + ... + W_{\rm ext}$$
 Rewrite with appropriate subscripts for the particular situation. Cross out any terms that are zero; write specific potential energy terms.

Solve for unknown.
Plug in numbers.

For a)

Initial State: State 1 Final State: State 3

Identify appropriate Fundamental Principle: Energy Principle
$$(m_{Ag}c^2 + K_{Agf}) + (m_{Ag}c^2 + K_{Agf}) + (m_{n}c^2 + K_{n,f}) + U_f = (m_{Pl}c^2 + K_{Pl,f}) + (m_{n}c^2 + K_{n,f}) + U_i + W_{ext}$$

$$2 \left(m_{\rm Ag} c^2 + K_{\rm Ag,f} \right) + \left(m_n c^2 + K_{n,f} \right) + \mathcal{V}_f = \left(m_{\rm Pl} c^2 + \mathcal{K}_{\rm Pl,f} \right) + \left(m_n c^2 + K_{n,i} \right) + \mathcal{V}_f + \mathcal{W}_{\rm ext}$$

$$\begin{split} 2 \Big(m_{\rm Ag} c^2 + K_{{\rm Ag}f} \Big) + \underbrace{\Big(m_{\rm Pl} c^2 + K_{{\rm n},f} \Big)}_{\rm Pl} = \Big(m_{\rm Pl} c^2 \Big) + \underbrace{\Big(m_{\rm pl} c^2 + K_{{\rm n},i} \Big)}_{\rm Pl} \\ 2 K_{{\rm Ag}f} = 2 \frac{1}{2} m_{{\rm Ag}} v^2 = m_{\rm Pl} c^2 - 2 m_{{\rm Ag}} c^2 \end{split}$$

$$v = \sqrt{\frac{m_{\text{Pl}}c^2 - 2m_{\text{Ag}}c^2}{m_{\text{Ag}}}}$$

$$= \sqrt{\frac{(240.054 \text{ u} - 2 \times 119.919 \text{ u})c^2}{119.919 \text{ u}}}$$

$$= \sqrt{0.0018 \times c^2} = 0.042 c = 1.3 \times 10^7 \text{ m/s}.$$

For b)

Initial State: State 1 Final State: State 2

Draw appropriate diagrams

Identify appropriate Fundamental Principle: Energy Principle

Identity appropriate Fundamental Principle. Energy Principle
$$\left(m_{Ag}c^2 + K_{Agf} \right) + \left(m_{Ag}c^2 + K_{Agf} \right) + \left(m_nc^2 + K_{n,f} \right) + U_f = \left(m_{Pl}c^2 + K_{Pl,i} \right) + \left(m_nc^2 + K_{n,i} \right) + U_i + W_e$$

$$2 \left(m_{Ag}c^2 + K_{Agf} \right) + \left(m_nc^2 + K_{n,f} \right) + U_f = \left(m_{Pl}c^2 + K_{Pl,i} \right) + \left(m_nc^2 + K_{n,i} \right) + V_i + W_{ext}$$

$$2 \left(m_{Ag}c^2 \right) + \left(m_nc^2 + K_{n,f} \right) + U_f = \left(m_{Pl}c^2 \right) + \left(m_nc^2 + K_{n,i} \right)$$

$$U_f = \frac{1}{4\pi\epsilon_0} \frac{Q^2}{r} = m_{Pl}c^2 - 2m_{Ag}c^2$$

$$r = \frac{1}{4\pi\epsilon_0} \frac{Q^2}{\left(m_{Pl} - 2m_{Ag} \right)c^2}$$

$$= 8.98755 \times 10^9 \frac{\text{N} \cdot \text{m}^2}{\text{C}^2} \frac{\left(47 \times 1.60218 \times 10^{-19} \text{ C} \right)^2}{\left(240.054 - 2 \times 119.919 \right) \times 1.66054 \times 10^{-27} \text{ kg} \times \left(2.99792 \times 10^8 \text{ m/s} \right)^2 }$$

$$= 1.58 \times 10^{-14} \text{ m}.$$

LEARN:

Do the units make sense?

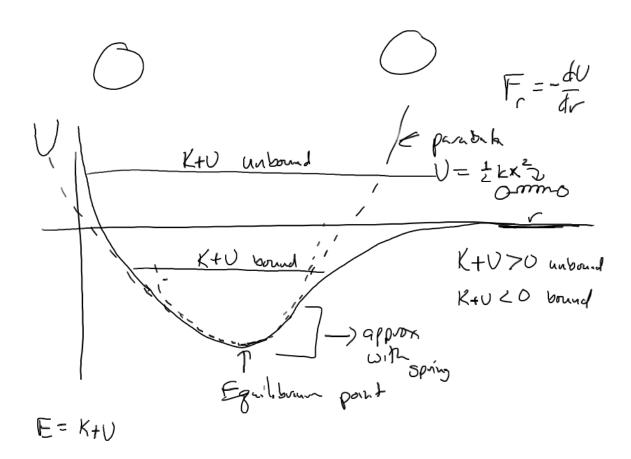
Did the speed of each silver nucleus turn out to be small enough that $\frac{1}{2}mv^2$ or $\frac{p^2}{2m}$ was an adequate approximation for the kinetic energy of one of the palladium nuclei?

Is the final speed a high speed? (High speed goes with lots of heating of the metal, which can run electric generators.)

Are the nuclei at a reasonable separation?

Potential Energy and Force

 $F_r = -\frac{dV}{dr}$ Force = -slope


F,=- du Fare =:

Shable Shable

Molecular binding

Draw potential energy curve:

- 1. Where is equilibrium position?
- 2. What happens to the potential energy/force if you push them together? (Just a little, and as much as possible)
- 3. What happens if you pull them apart? (Just a little, and an infinite amount)

Review for Midterm 2

Chapter Ch 4+5

Ch4

Young's Modulus $Y = \frac{\text{Stress}}{\text{Strain}} = \frac{(F_+/A)}{(\Delta L/L)}$

Micro/macro $Y = \frac{k_{s,i}}{d} \in dismeter$

Genow how to get diameter, etc.

Speed of Sama $V = \sqrt{\frac{k_{sil}}{m_a}} d$

Mare an mamentan principle $\frac{d\vec{p}}{dt} = \vec{F}_{net} / \left(\frac{d|\vec{p}|}{dt}\right) \hat{p} = \vec{F}_{11} \text{ and } |\vec{p}| \frac{d\hat{p}}{dt} = \vec{F}_{L}$

Analytic solution to harmonic oscillator

$$X = A \cos(\omega t) \qquad \omega = \sqrt{\frac{k_s}{m}}$$

amplitude Assuming no friction, spring mess

Chapter 5
Every of particle: Eparticle = \frac{1}{I-\frac{\pi^2}{\lambda^2}}

= MC2+K
rest * kinetic

Kinetic enegy

K= Vmc2-mc2

KZ Emv = Em 15 VKC

Connection between every + momentum

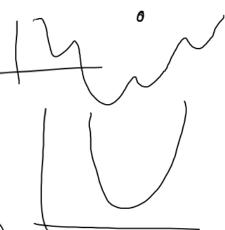
E2-(pc)2=(mc2)2

So for massless partitles => = pc

Every private $\Delta E_{system} = W_{surrounding}$ Work $W = \overrightarrow{F} \cdot \Delta \overrightarrow{r} = F_{x} \Delta V_{x} + F_{y} \Delta V_{y} + F_{z} \Delta V_{z}$ $= |\overrightarrow{F}| |\Delta \overrightarrow{r}| \cos \Theta$ $W = \overline{Z} \overrightarrow{F} \cdot \overrightarrow{\sigma} \overrightarrow{r}$ or $W = \overline{Z} \overrightarrow{F} \cdot \overrightarrow{\sigma} \overrightarrow{r}$ Conservation of energy $\Delta E_{system} + \Delta E_{surrounding} = \mathbf{0}$ Potential energy (energy of interacting pair of partitles) $\Delta U = -W_{internal}$ Force of potential energy $F_{x} = -dU_{x}$

Know how to plot potential + Kinetic energy

Ugain = -G Mimz, G=6.7×10" Ninz


Egt

New the Surface of Eath & U & D(Mgy) hept

Uelectic = 41760 V, Giffer = 9×109 Nimz

CZ

Pracos =
$$\frac{M}{V} = \frac{N_{atom} M_{atom}}{N_{atom}} = P_{unicos}$$

